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Transonic self-similar flows with a shock wave in the form of a generalized para- 
bola z / 8-n = const (i and # are Cartesian coordinates, and n is the self-simi- 

larity flow exponent) were studied for the first time in [I, 21. In this paper we 
consider the conditions under which the shock wave is rectilinear. Along with the 
case of a normal shock (for which examples were constructed in [3, 41) there is 
the possibility of an oblique shock, wherein the property of shock wave and stream- 
line being perpendicular at each point is not realized. We construct, as an exam- 
ple, a family of flows generalizing the results presented in [4]. 

Assuming that the flow velocity differs little from the sonic velocity, we can write 
the velocity vector components in the form [5] 

v, = a, (1 -+- EV,., -;li- = U*E~~‘Uv, z = x, ij = a+jj (1) 

Here a is a small quantity ; a, is the critical sound speed, and v, and V, are dimen- 
sionless components of a perturbation of the sonic flow which satisfy the equations 

Self-similar solutions of the system (2) are of the form [6] 

v, = i Y 12’n-1’f (EL v,=~yp-“g(g), g=xjyp @Y (3) 

When Eqs. (3) are substituted into (l), we obtain two ordinary differential equations [7] 

t$--knE-$f=3(n- l)g, n~~+$f-=2@-l)f 

The following conditions must be satisfied at the shock wave 123: 

fi + f2 = 2e2, g2 - g1 = -nE (f2 - !I>, E, = $2 = E 

The subscripts 1 and 2 refer to quantities on opposite sides of the shock front. An 
sis of the relations (5) shows that shocks of the following types are possible : 

1) a curved shock (F; # 0, n + I), 

2) a rectilinear shock : 

(51 

analy- 

appears 

a) E = 0, g, = g2 = 0 for a normal shock, 
b) g = 0, g, := g, # 0 or g # 0, n = 1 for an oblique shock. 

We can assume that the shock wave surrounding a local supersonic zone, which 

on a profile at large subsonic speeds, is an oblique shock. Using the flow scheme assumed 
in [4], we consider a set of flows of this type. To this end we investigate a self-similar 
Cauchy problem for the system (4). We specify the initial data on the back side of the 
shock front, i.e. for E, = 0 we can set fs equal to some value, which is constant for 

(4) 
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all cases, for example, the value -0. 5, The values ofthe self-similarity exponent n 
and ga must satisfy the condition for the absence of limiting lines in Regions I and IV 
(see Fig. 1, where the solid curves denote streamlines ; the region in which the Mach 

number fif < 1 is shown shaded). The solutions 
in Regions II and III are constructed by taking 
into account successive matching of values along 
the limiting characteristics Ci (i = 1, 2, 3). 

The shaded region in Fig. 2 shows the allowable 
values of n and g,. In this region Frankl’s ex- 
ample [4] corresponds to the point r~=~/s, g,- 

0. The segment ge=O (“ia < n<Z) cor- 
responds to flows with a normal shock wave. 
When g, > 0 the tangential component of the 

velocity at the shock wave is directed towards 

Fig. 2 Fig. 3 

the point of intersection of the shock with the sonic line. This indicates an attenuation 
of the shock wave at the point 0 (Fig, 1). Negative values of g,, on the other hand, 
correspond to the case in which a shock arises at the sonic line ; here in contrast to the 
situation in Fig. 1, the sonic line is situated in the first quadrant and is tangent to the 
shock wave. 

On the limiting characteristics the flow is not analytic. We note that only when 
?Z -= 3/, does the assignment of the initial data f2 and g, uniquely determine the flow 
in the neighborhood of the coordinate origin. It is uniquely determined for other values 

of n only in the Regions 1 and IV. 
The calculated results for the set of flows considered are shown in Fig. 3 for n 17 

1.55 and g, = 0.1. The totality of the integral curves, which describe all the possible 
flows in Region II, is bounded by curves (the image of the limiting characteristic c,, 
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forms the lower boundary (see Fig. 3) and that of C, forms the upper boundary)which 
are determined in a neighborhood of the point K by an asymptotic expansion of the 

form [8] 
f = n2 + d, (g - W2 + da (E - Ekj2 + . . . 

As g2 approaches its maximum value (for a given value of n) the point K tends to- 
wards the parabola f = n2z2 at infinity ; this means that the upper boundary of the 

region in Fig. 2 is not included in the set of allowable values. 

The change in the angle of inclination of the streamline to the z-axis in the passage 
through the oblique shock wave is given by the expression 

92 - 
0, = 2l+ V,V~ 

It should be noted that in the class of self-similar solutions it is not possible to con- 
struct flows without limiting lines (limiting lines are present in the example given in 

[3]) and with a rectilinear shock wave, providing that a characteristic emanates from 
the end of the shock. 

The author thanks S. V. Fal’kovich and I. A. Chernov for valuable discussions and sug- 
gestions. 
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Editor’s Note. This reference is erroneously given in the Russian original. It does 
not appear in the PMM Journal indicated. 


